Translation Model Based Cross-Lingual Language Model Adaptation: from Word Models to Phrase Models
نویسندگان
چکیده
In this paper, we propose a novel translation model (TM) based cross-lingual data selection model for language model (LM) adaptation in statistical machine translation (SMT), from word models to phrase models. Given a source sentence in the translation task, this model directly estimates the probability that a sentence in the target LM training corpus is similar. Compared with the traditional approaches which utilize the first pass translation hypotheses, cross-lingual data selection model avoids the problem of noisy proliferation. Furthermore, phrase TM based cross-lingual data selection model is more effective than the traditional approaches based on bag-ofwords models and word-based TM, because it captures contextual information in modeling the selection of phrase as a whole. Experiments conducted on large-scale data sets demonstrate that our approach significantly outperforms the state-of-the-art approaches on both LM perplexity and SMT performance.
منابع مشابه
Statistical Alignment Models for Translational Equivalence
The ever-increasing amount of parallel data opens a rich resource to multilingual natural language processing, enabling models to work on various translational aspects like detailed human annotations, syntax and semantics. With efficient statistical models, many cross-language applications have seen significant progresses in recent years, such as statistical machine translation, speech-to-speec...
متن کاملLearning Monolingual Compositional Representations via Bilingual Supervision
Bilingual models that capture the semantics of sentences are typically only evaluated on cross-lingual transfer tasks such as cross-lingual document categorization or machine translation. In this work, we evaluate the quality of the monolingual representations learned with a variant of the bilingual compositional model of Hermann and Blunsom (2014), when viewing translations in a second languag...
متن کاملAn Efficient Cross-lingual Model for Sentence Classification Using Convolutional Neural Network
In this paper, we propose a cross-lingual convolutional neural network (CNN) model that is based on word and phrase embeddings learned from unlabeled data in two languages and dependency grammar. Compared to traditional machine translation (MT) based methods for cross lingual sentence modeling, our model is much simpler and does not need parallel corpora or language specific features. We only u...
متن کاملمدل ترجمه عبارت-مرزی با استفاده از برچسبهای کمعمق نحوی
Phrase-boundary model for statistical machine translation labels the rules with classes of boundary words on the target side phrases of training corpus. In this paper, we extend the phrase-boundary model using shallow syntactic labels including POS tags and chunk labels. With the priority of chunk labels, the proposed model names non-terminals with shallow syntactic labels on the boundaries of ...
متن کاملLanguage model adaptation using cross-lingual information
The success of statistical language modeling techniques is crucially dependent on the availability of a large amount training text. For a language in which such large text collections are not available, methods have recently been proposed to take advantage of a resource-rich language, together with cross-lingual information retrieval and machine translation, to sharpen language models for the r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012